
Software Developer - Preparation Document

Dear Students,

We hire tech enthusiasts with a broad set of technical skills who are ready to tackle
some of technology's greatest challenges. The hiring process has been designed from
the ground level to avoid any false positives and in order to help you to get through
our process.

We have curated this document after examining some of the most frequently asked
questions & also keeping in mind the preparation that you may require in order to
crack our selection process. This document will come in handy in order to understand
the position and the tips and tricks that will help you prepare for the hiring process for
Software Developer at Josh Technology Group.

Please Note:- This document is intended to provide you with the required guidance
and sample material that would be helpful in the preparation and this in no way
guarantees your selection.

Excited much to participate in the selection process? We look forward to your
participation!

Wish you all the luck for the hiring process!



Let’s Get Started

How to Prepare :

1) Start your prep early. Before your interview date, set aside a specific amount of
time every day to practice your coding, algorithmic, and problem-solving skills.

2) Do as many coding questions as you can. Visit Glassdoor, CareerCup, Project
Euler, or another site listed in the appendix of this guide. The idea isn’t to solve
every question but to become familiar with the pattern of interpreting a
question, formulating a solution, and writing an efficient, bug-free program
without a compiler.

3) Write code in a simple text editor. In the interview, you’ll write your code in a
similar environment without autocompletion and code execution support.

4) Ramp up your speed. Time yourself. Practice under time pressure: coding speed
is important. To prepare in hard mode, practice with a colleague playing the
worst interviewer ever. The more rigorous your training, the easier you’ll find the
interviews. Try to complete two coding problems in 30-40 minutes. You can also
practice by setting harsh time limits. If you’re able to solve the medium-level
questions within 20 – 30 minutes, it’s usually a good sign.

5) Go over data structures, algorithms, and complexity. Be able to discuss the Big
O complexity of your approaches. Don’t forget to brush up on your data
structures like linked lists, arrays, stacks, queues, and trees. Also sorts, searches,
and traversals (BFS, DFS). And review recursion and iterative approaches.

6) Resources Coding questions and exercises
a) To study runtime complexity: Big O Cheat Sheet
b) Gauge how prepared you are on CS fundamentals with more than 100

Questions that will take from less than a minute to about an hour to solve.
c) Engineer favorites for practicing coding problems:

i) LeetCode
ii) HiredInTech
iii) HackerRank
iv) CareerCup
v) CodeChef
vi) Project Euler
vii) GeeksforGeeks

https://www.interviewcake.com/article/python/big-o-notation-time-and-space-complexity
https://www.interviewbit.com/
https://www.interviewbit.com/


Considerations that lead to a positive outcome:

Interviewers will weigh the success of an interview based on the approach as much as
the answer. They’ll funnel your performance based on the following considerations:

1) Do you listen carefully and comprehend the question?
2) Do you ask the correct questions before proceeding?
3) Do you notice and follow hints the interviewer gives?
4) Are you quick to comprehend/solve problems?
5) Do you enjoy finding multiple solutions before selecting the best one?
6) Do you keep seeking out new methods to tackle the problem?
7) Are you inventive and flexible in your solutions, and open to new ideas?
8) Do your questions lead to more complex problem-solving?

Some Additional Tips :

1) Avoid misunderstanding. When we ask you to provide a solution, first define
and develop a framework of the problem as you see it. Ask for help or
clarification, and spend 2 – 5 minutes asking the interviewer about corner cases
on the problem. This will ensure that you’ve understood the problem correctly.

2) Think out loud. It helps your interviewer follow along, learn about your
problem-solving skills, and provide hints if needed. Discuss initial ideas and
solutions, which will help you to clarify any ambiguity.

3) Avoid solutions with lots of edge cases. Avoid solutions with lots of edge cases
or huge if-else blocks. Deciding between iteration and recursion is always an
important step.

4) Write a working solution and iterate. It’s better to have a non-optimal but
working solution than random fragments of an optimal but unfinished solution.

5) Hints. If your interviewer gives you hints to improve your code, please use them.
6) If your solution is getting messy, step back. Most coding interview questions are

designed to have reasonably elegant solutions. If you have if-else blocks and
special cases everywhere, you might be able to take a better approach. Look for
patterns and try to generalize.

7) Plan your approach. Ensure that you spend time planning your approach, but
remember you can always go brute force and then optimize from there.

8) Clarifying questions. Make sure you’re asking clarifying questions as you go
along (ensure you have all the info you need).


